ECS 452: Digital Communication Systems 2013/1 HW 3 - Due: Sep 次 18

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work on all of them.
(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.
(d) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
Problem 1. Consider two waveforms $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 3.1. A communication system uses these two waveforms to transmit each bit of information. To transmit bit 0 , waveform $s_{1}(t)$ is transmitted. To transmit bit 1 , waveform $s_{2}(t)$ is transmitted. The channel is assumed to be additive white Gaussian noise with PSD $\frac{N_{0}}{2}$. Bits 0 and 1 are also assumed to be chosen with equal probability. The detector used at the receiving end is the optimal detector.

Figure 3.1: Signal set for Question 1
(a) Find the probability of detection error for this system. (You may use the constellation derived in an earlier assignment.)
(b) Plot $P(\mathcal{E})$ (in \log scale) vs. $E_{b} / N_{0}($ in dB$)$. Use MATLAB to compare the theoretical results and simulation results.
(c) Draw the block diagram of the receiver that implements optimal detection with matched filters.

Problem 2. Consider a ternary constellation. Assume that the three vectors are equiprobable.
(a) Suppose the three vectors are

$$
\boldsymbol{s}^{(1)}=\binom{0}{0}, \boldsymbol{s}^{(2)}=\binom{3}{0}, \text { and } \boldsymbol{s}^{(3)}=\binom{3}{3}
$$

Find the corresponding average energy per symbol.
(b) Suppose we can shift the above constellation to other location; that is, suppose that the three vectors in the constellation are

$$
\boldsymbol{s}^{(1)}=\binom{0-a_{1}}{0-a_{2}}, \boldsymbol{s}^{(2)}=\binom{3-a_{1}}{0-a_{2}}, \text { and } \boldsymbol{s}^{(3)}=\binom{3-a_{1}}{3-a_{2}} .
$$

Find a_{1} and a_{2} such that corresponding average energy per symbol is minimum.
Problem 3. Consider four rectangular 24-ary schemes.
(a) 1×24 constellation
(b) 2×12 constellation
(c) 3×8 constellation
(d) 4×6 constellation

Each scheme are derived from the waveform models whose noise process is additive white Gaussian noise with PSD $N_{0} / 2$. All points are equally likely to be transmitted. Each constellation is centered at the origin (so that the average E_{s} is minimized.) Let d be the vertical distances and horizontal distances between any adjacent points. Optimal detection is used.

The probability of error for each of the constellation is of the form

$$
P(\mathcal{E})=A q+B q^{2}
$$

where

$$
q=Q\left(\sqrt{C \times \frac{E_{b}}{N_{0}}}\right) .
$$

(i) Find the constants A, B, and C for each of the cases.
(ii) Compare the performance of these four schemes.
(iii) Compare the theoretical results with MATLAB simulations.
(a)

From HW 1, we have already used GSop to derive the constellation:

Remark: we know that, for equiprobable binary signalling schemes,

$$
P(\varepsilon)=Q\left(\frac{d}{2 \sigma}\right) .
$$

Pythagorus' theorem
The distance between the two points is $d \triangleq \sqrt{2} \vee \sqrt{T_{6}}$. So, the corresponding probability of (decoding) error is

$$
P(\varepsilon)=Q\left(\frac{d}{2 \sigma}\right)=Q\left(\frac{V \sqrt{2 T_{b}}}{2 \sigma}\right)=Q\left(\frac{v \sqrt{T_{b}}}{\sqrt{2} \sigma}\right)
$$

For AWON channel with PSD $\frac{N_{0}}{2}$, we have $\sigma^{2}=\frac{N_{0}}{2}$.
Therefore, $\quad P(\varepsilon)=Q\left(\frac{V \sqrt{T_{b}}}{\sqrt{N_{0}}}\right)=Q\left(V \sqrt{\frac{T_{6}}{N_{0}}}\right)$.
(b) The energy of both points is $V^{2} T_{b}$. So, $E_{s}=V^{2} T_{b}$. Here, $M=2$. So, $E_{b}=\frac{E_{s}}{\log _{2} 2}=V^{2} T_{b}$.

Rewriting $P(\varepsilon)$ in part (a), we have

$$
\begin{aligned}
P(\varepsilon)= & Q\left(\sqrt{\frac{v^{2} T_{b}}{N_{0}}}\right)=\underbrace{Q\left(\sqrt{N_{0}}\right.}_{R^{\left(\sqrt{E_{b}}\right.}}) . \\
& \text { In fact, we can answer this directly by } \\
& \text { realizing that this is an equiprobable } \\
& \text { binary orthogonal signaling scheme. }
\end{aligned}
$$

(c) The optimal detector can be implemented from matched filter as followed

Note that
(1) There is no need for the bias term because the waveforms are equally likely and of equal energy.
(2) To make matched filter causal, we choose $T \geqslant T b$.

To minimize delay, we choose $T=T b$.
In which case, the plots for $s_{1}(T-t)$ and $s_{2}(T-t)$ are shown below:

$$
\left(\Delta_{i}(T-t)=\Delta_{i}(-(t-T)) \cdot\right)
$$

(a)

$$
\begin{aligned}
& \vec{B}^{(1)}=\binom{0}{0} \\
& \vec{B}^{(2)}=\binom{3}{0} \\
& \vec{B}^{(3)}=\binom{3}{3}
\end{aligned}
$$

$$
\begin{aligned}
E_{s} & =\frac{1}{3}\left(0^{2}+3^{2}+3^{2}+3^{2}\right)=9 \\
(b) \quad E_{s} & =\sum_{i=1}^{3} p_{i} \sum_{j=1}^{2}\left(\overrightarrow{3}_{j}^{(i)}\right)^{2}=\frac{1}{3}\left(\sum_{i=1}^{3}\left(\vec{r}_{1}^{(i)}\right)^{2}+\sum_{i=1}^{3}\left(\vec{\Delta}_{2}^{(i)}\right)^{2}\right) \\
& =\frac{1}{3}\left(\left(0-a_{1}\right)^{2}+\left(2-a_{1}\right)^{2}+\left(2-a_{1}\right)^{2}\right)+\frac{1}{3}\left(\left(0-a_{2}\right)^{2}+\left(0-a_{2}\right)^{2}+\left(2-a_{2}^{2}\right)\right)
\end{aligned}
$$

In general, we have to minimize terms of the form

$$
\begin{aligned}
\sum_{i} p_{i}\left(x_{i}-a\right)^{2} & =\mathbb{E}\left[(x-a)^{2}\right]=\mathbb{E}[(x-\underbrace{-\mathbb{E} x+\mathbb{E} x}_{0}-a)^{2}] \\
& =\operatorname{Var} x+2 \underbrace{\mathbb{E}[(x-\mathbb{E} x)](\mathbb{E} x-a)+(\mathbb{E} x-a)^{2}}_{0} \\
& =\operatorname{Var} x+\underbrace{(\mathbb{E} x-a)^{2}}_{\uparrow}
\end{aligned}
$$

the only term that depends on a. Minimum value of 0 is achieved when $a=\mathbb{E} X$.

So, the minimum value occurs when $a=\mathbb{E} X=\sum_{i} p_{i} x_{i}$
Minimum E_{s} occurs when

$$
a_{1}=\frac{1}{3}(0+3+3)=2 . \quad a_{2}=\frac{1}{3}(0+0+3)=1
$$

For 1-D standard rectangular M-PAM

$$
\begin{gathered}
P\left(\varepsilon \mid \vec{S}=j^{(i)}\right)= \begin{cases}Q\left(\frac{d}{2 \sigma}\right), & i=1, M \\
2 Q\left(\frac{d}{2 \sigma}\right), & i=2,3, \ldots, M-1\end{cases} \\
\text { So, } P(\varepsilon)=\frac{1}{M}(2 \times q+(M-2) 2 q)=\frac{1}{M}((M-1) 2 \sigma \sigma)=2 \frac{M-1}{M} q=2 \frac{M-1}{M} Q\left(\frac{d}{2 \sigma}\right) \\
A=2 \frac{M-1}{M}=\frac{23}{12} \\
B=0
\end{gathered}
$$

For 2-D standard rectangular M-QAM
To find $P(\varepsilon)$, recall that we have three cases of points

$$
\left.\begin{array}{ll}
\text { case } & p\left(\varepsilon \mid \vec{s}=\vec{s}^{(i)}\right) \\
\text { corner } & n_{1} \\
\begin{array}{ll}
\text { middle } & n_{2} \\
\text { center } & 3 q-2 q^{2} \\
\text { cent } & n_{3}
\end{array} 4 q-4 q^{2}
\end{array}\right\} q=Q\left(\frac{d}{20}\right)
$$

Therefore, we simply count the points in each case and we those numbers as weights for $p(\varepsilon)$:

$$
\begin{aligned}
& p(\varepsilon)=\frac{1}{M}\left(n_{1}\left(2 q-q^{2}\right)+n_{2}\left(3 q-2 q^{2}\right)+n_{3}\left(4 q-4 q^{2}\right)\right) \\
& \Rightarrow A=\frac{1}{M}\left(2 n_{1}+3 n_{2}+4 n_{3}\right) \\
& \Rightarrow B=-\frac{1}{M}\left(n_{1}+2 n_{2}+4 n_{3}\right)
\end{aligned}
$$

(2) To change $\frac{d}{2 \sigma}$ to $\frac{E_{b}}{N_{0}}$, we need to find E_{b}.

To do this, we start with E_{s} average energy per symbol.
Remark: There ave many ways to find E_{s}. As long as you can find the coordinates of the points in the constellation, then, it is straight forward to find the energy of each point and then average all the energy. This can be done easily in MATLAB. However, here, we show how to derive the answer analytically.

Standard $1-D$ M-PAM:
start with $(1,2,3, \ldots, M) \times d$
 to d.

Then, we shift the constellation so that the center is at origin. To do this, we simply subtract the average out.
./M. 1 ,
at origin. To do this, we simply subtract the average
out.

$$
(1,2,3, \cdots, M) \times d-\underbrace{\left.\frac{1}{M} k \frac{1}{M} \frac{(M+1)}{2}\right) d}_{\substack{1 \\ \text { call this as } m \\\left(\sum_{k=1}^{M} k\right) d}}
$$

Viewing this as a RV, we may think about

$$
R V \quad U \text { uniform on } 1,2, \ldots, M
$$

$$
R V \quad S=d U-\mathbb{E}[d U]=d(U-\mathbb{E} U)
$$

$$
\text { So, } \mathbb{E S}=0 \text { and } \mathbb{E}\left[S^{2}\right]=\operatorname{Var} S=d^{2} \operatorname{Var} U
$$

Next, we find the average energy:

$$
\begin{aligned}
E_{s} & =\frac{1}{M}\left(\sum_{k=1}^{M}(k d-m)^{2}\right)=\frac{1}{M}\left(\sum_{k=1}^{M} k^{2} d^{2}-2 m d \sum_{k=1}^{M} k+m^{2} M\right) \\
& =\frac{1}{M}\left(\sum_{k=1}^{M} k^{2} d^{2}-M m^{2}\right) \\
& =d^{2}\left(\left(\frac{1}{M} \sum_{k=1}^{M} k^{2}\right)-\left(\frac{1}{M} \sum_{k=1}^{M} k\right)^{2}\right)=d^{2}\left(\frac{1}{3}\left(M^{2}-1\right)-\left(\frac{M+1}{2}\right)^{2}\right) \\
& =d^{2}\left((M+1)\left(\frac{M-1}{3}-\frac{M+1}{4}\right)\right)=d^{2} \frac{(M+1)(M-1)}{12}=\frac{1}{12} d^{2}\left(M^{2}-1\right)
\end{aligned}
$$

Some facts about summation:

$$
\begin{aligned}
& \sum_{k=1}^{M} k=\frac{M(M+1)}{2} \\
& A=1+2+\cdots+M \\
& \frac{A=1}{2 A}=\underbrace{(M+1)+(M+1)+\cdots+1 M+1}_{M+M+1+\cdots+1}) \\
& \sum_{k=1}^{M} k^{2}=\sum_{k=1}^{M} k(k-1)+\sum_{k=1}^{M} k
\end{aligned}
$$

$$
\sum k(k-1)=1 \cdot 0+2 \cdot 1+3 \cdot 2+\cdots+M(M-1)
$$

$$
\begin{aligned}
= & 1 \cdot 0 \cdot 3+2 \cdot 1 \cdot 3+3 \cdot 2 \cdot 3+\cdots+M(M-1) \cdot 3 \\
= & 1 \cdot 0 \cdot \frac{2-(-1)}{3}+2 \cdot 1 \cdot \frac{3-0}{3}+\cdots+M(M-1) \frac{(M+1)-(M-2)}{3} \\
= & \frac{1}{3}((2 \cdot 1 \cdot 0)-(1 \cdot 0 \cdot(-1))+(3 \cdot 2 \cdot 1)-(2 \cdot 1 \cdot 0)+ \\
& \cdots+(M+1)(M)(M-1)-M(M-1)(M-2)) \\
= & \frac{1}{3} M(M+1)(M-1) \\
\sum_{k=1} K^{2}= & \frac{1}{3} M(M+1)(M-1)+\frac{M(M+1)}{2}=M(M+1)\left(\frac{M-1}{3}+\frac{1}{2}\right) \\
= & \frac{1}{6} M(M+1)(2 M+1)
\end{aligned}
$$

Alternatively, we have $E_{s}=\operatorname{E}\left[S^{2}\right]=d^{2} \operatorname{Var} U=d^{2}\left(\left(\frac{1}{M} \sum_{k=1}^{M} k^{2}\right)-\left(\frac{1}{M} \sum_{k=1}^{M} k\right)^{2}\right) \leftarrow$ same as above.

$$
=d^{2}\left(\frac{m^{2}-1}{12}\right)
$$

Knowing E_{s}, we con then find $E_{b}=E_{5} / \log _{2} M=\frac{1}{12} \frac{d^{2}\left(M^{2}-1\right)}{\log _{2} M}$

$$
d^{2}=12\left(\log _{2} M\right) E_{b}
$$

$$
\begin{aligned}
& m^{2}-1 \\
& \begin{aligned}
\frac{d}{2 \sigma}=\sqrt{\frac{d^{2}}{2 N_{0}}}=\sqrt{\underbrace{\frac{6}{M^{2}-1}\left(\log _{2} M\right) \frac{E_{b}}{N_{0}}}} \begin{array}{rl}
M & =24 \\
M^{2}-1
\end{array} \log _{2} M) \stackrel{\downarrow}{=} \frac{6}{575} \log _{2} 24
\end{aligned}
\end{aligned}
$$

Now for 2-D standard M-ary QAM. Suppose $M=M_{1} \times M_{2}$.

$$
\begin{aligned}
E_{s}=\mathbb{E}\left[\|\vec{S}\|^{2}\right]=\mathbb{E}[& \left.\left(S_{1}\right)^{2}+\left(S_{2}\right)^{2}\right] \\
\uparrow & =\mathbb{E}\left[S_{1}^{2}\right]+\mathbb{E}\left[S_{2}^{2}\right] \\
& \begin{array}{l}
\text { the first the second } \\
\text { component component } \\
\\
\text { of } \vec{S}
\end{array} \quad \text { of } \vec{S}
\end{aligned}
$$

Let $U_{j} \sim U_{n i f o r m}$ on $1: M_{j}$.
Define $\quad S_{j}=d u_{j}-\mathbb{E}\left[d u_{j}\right]=d\left(U_{j}-\mathbb{E} U_{j}\right)$
Then, $\mathbb{E}\left[s_{1}^{2}\right]=d^{2} \operatorname{Var} U_{j}=d^{2} \frac{M_{j}^{2}-1}{12}$
Therefore, $E_{s}=\frac{d^{2}}{12}\left(M_{1}^{2}+M_{2}^{2}-2\right)$

$$
\begin{aligned}
& E_{b}=\frac{d^{2}}{12} \frac{M_{1}^{2}+M_{2}^{2}-2}{\log _{2} M} \Rightarrow d^{2}=\frac{12}{M_{1}^{2}+M_{2}^{2}-2} \log _{2} M E_{b} \\
& \frac{d}{2 \sigma}=\sqrt{\frac{d^{2}}{4 \sigma^{2}}}=\sqrt{\frac{d^{2}}{2 N_{0}}}=\sqrt{\frac{6}{M_{1}^{2}+M_{2}^{2}-2}\left(\log _{2} M\right) \frac{E_{6}}{N_{0}}} \\
& C=\frac{6}{M_{1}^{2}+M_{2}^{2}-2} \log _{2} M
\end{aligned}
$$

(i) Summary:

$M=M_{1} \times M_{2}$	A	B	C
1×24	$\frac{23}{12}$	0	$\frac{6}{575} \times \log _{2} 24$
2×12	$\frac{17}{6}$	$-\frac{11}{6}$	$\frac{3}{73} \times \log _{2} 24$
3×8	$\frac{37}{12}$	$-\frac{7}{3}$	$\frac{6}{71} \times \log _{2} 24$
4×6	$\frac{19}{6}$	$-\frac{5}{2}$	$\frac{3}{25} \times \log _{2} 24$

(ii) For small $\frac{E_{b}}{N_{0}}$ (when $\frac{E_{b}}{N_{0}} \rightarrow 0$),

$$
\begin{aligned}
& \qquad \begin{array}{l}
q=Q\left(\sqrt{C \frac{E_{5}}{N_{0}}}\right) \rightarrow Q(0)=0.5 \\
P(\varepsilon) \rightarrow \frac{A}{2}+\frac{B}{4}=\frac{23}{24} \approx 0.9583 \text { (same for all constellation) } \\
\text { For larger } \frac{E_{b}}{N_{0}} \text {, the plots of } P(\varepsilon) \text { shows that the performance is better } \\
\text { when the constellation is closer to being a square. }
\end{array} \text { (}
\end{aligned}
$$

> Intuitively, we note that $P(\varepsilon)$ depends strongly on the distances btw the points in the constellation. The "square" constellation uses less average energy because the points are closer to the origin. So, for a given average energy, the "square" constellation enjoys greater distances btw its point and hence better $P(\varepsilon)$.
(iii) See the plots in part (ii).
ECS 452: Digital Communication Systems
HW 4-Due: Oct 4
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work on all of them.
(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.
(d) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1. Consider random variables X and Y whose joint pmf is given by

$$
p_{X, Y}(x, y)= \begin{cases}c(x+y), & x \in\{1,3\} \text { and } y \in\{2,4\}, \\ 0, & \text { otherwise } .\end{cases}
$$

Evaluate the following quantities.
(a) $H(X, Y)$
(b) $H(X)$
(c) $H(Y)$
(d) $H(X \mid Y)$
(e) $H(Y \mid X)$
(f) $I(X ; Y)$

Problem 2. Consider a pair of random variables X and Y whose joint pmf is given by

$$
p_{X, Y}(x, y)= \begin{cases}1 / 15, & x=3, y=1 \\ 2 / 15, & x=4, y=1 \\ 4 / 15, & x=3, y=3 \\ \beta, & x=4, y=3 \\ 0, & \text { otherwise }\end{cases}
$$

Evaluate the following quantities.
(a) $H(X, Y)$
(b) $H(X)$
(c) $H(Y)$
(d) $H(X \mid Y)$
(e) $H(Y \mid X)$
(f) $I(X ; Y)$

Problem 3. Compute the capacities of each of the communication channels whose transition probability matrices are specified below.
(a)

$$
Q=\left[\begin{array}{ll}
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]
$$

(b)

$$
Q=\left[\begin{array}{ccccc}
0 & 1 / 5 & 4 / 5 & 0 & 0 \\
2 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 .
\end{array}\right]
$$

(c)

$$
Q=\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

(d)

$$
Q=\left[\begin{array}{ll}
1 / 3 & 2 / 3 \\
1 / 3 & 2 / 3
\end{array}\right]
$$

Problem 4 (Blahut-Arimoto algorithm).
(a) Create a MATLAB function capacity which calculates the capacity $C=\max _{p} I(p, Q)$ and the corresponding capacity-achieving input pmf p^{*} using Blahut-Arimoto algorithm.

The function takes two inputs: (1) the channel transition probability matrix $Q(y \mid x)$ and (2) the initial guess of the pmf $p_{0}(x)$.
Define a sequence $p_{r}(x), r=0,1, \ldots$ according to the following iterative prescription

$$
p_{r+1}(x)=\frac{p_{r}(x) c_{r}(x)}{\sum_{x} p_{r}(x) c_{r}(x)}
$$

where

$$
\begin{equation*}
\log c_{r}(x)=\sum_{y} Q(y \mid x) \log \frac{Q(y \mid x)}{q_{r}(y)} \tag{4.1}
\end{equation*}
$$

and

$$
q_{r}(y)=\sum_{x} p_{r}(x) Q(y \mid x) .
$$

After several iterations, the pmf $p_{r}(x)$ will converge to the capacity-achieving one. In fact,

$$
\begin{equation*}
\log \left(\sum_{x} p_{r}(x) c_{r}(x)\right) \leq C \leq \log \left(\max _{x} c_{r}(x)\right) \tag{4.2}
\end{equation*}
$$

So, we can use (4.2) to control the accuracy of our results.
(b) Check your answers in Problem 3 using the Blahut-Arimoto algorithm.

First, we need to find the unknown constant c. The given description for the joint poof can be expressed using the joint poof matrix as

$$
P_{x, y}=\begin{gathered}
y \\
x
\end{gathered}\left[\begin{array}{ll}
2 & 4 \\
3 c & 5 c \\
5 c & 7 c
\end{array}\right]
$$

Recall that $\sum_{x} \sum_{y} P_{X, Y}(x, y)=1$.
Here, we have

$$
\begin{aligned}
3 c+5 c+5 c+7 c & =1 \\
20 C & =1 \\
c & =\frac{1}{20} .
\end{aligned}
$$

a) $H(X, y)=H\left(\left[\begin{array}{llll}\frac{3}{20} & \frac{1}{4} & \frac{1}{4} & \frac{7}{20}\end{array}\right]\right)=-\frac{3}{20} \log _{2} \frac{3}{20}-\frac{2}{4} \log _{2} \frac{1}{4}-\frac{7}{20} \log _{2} \frac{7}{20}$ ≈ 1.9406 bits.

To find $H(X)$ and $H(Y)$, we need P_{X} and P_{Y}, respectively. These can be found from the sums along the rows and columns of $P_{X, Y}$.

$$
\begin{gathered}
\begin{array}{cc}
2 & 4 \\
1 \\
3
\end{array}\left[\begin{array}{cc}
3 c & 5 c \\
5 c & 7 c
\end{array}\right] \rightarrow 8 c=\frac{8}{20}=\frac{2}{5} \\
\downarrow \\
8 c \\
8 \\
11
\end{gathered}
$$

b) $H(x)=H\left(\left[\frac{2}{5} \frac{3}{5}\right]\right) \approx 0.9710$
c) $H(Y)=H\left(\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]\right) \approx 0.9710$
d) $H(X \mid Y)=H(X, Y)-H(Y) \approx 0.9697$
e) $H(Y \mid X)=H(X, Y)-H(X) \approx 0.9697$
f) $I(X ; Y)=H(X)+H(Y)-H(X, Y) \approx 0.0013$

First, we need to find the unknown constant β The given description for the joint pmf can be expressed using the joint poof matrix as

$$
P_{X, Y}=\begin{array}{r}
y \\
3
\end{array}\left[\begin{array}{cc}
1 & 3 \\
4 / 15 & 4 / 15 \\
2 / 15 & \beta
\end{array}\right]
$$

Recall that $\sum_{x} \sum_{y} P_{X, Y}(x, y)=1$.
Here, we have

$$
\frac{1}{15}+\frac{4}{15}+\frac{2}{15}+\beta=1
$$

$$
\beta=1-\frac{7}{15}=\frac{8}{15}
$$

$$
2\rangle y=1
$$

$$
P_{x, Y}=\begin{array}{cc}
3 \\
4
\end{array}\left[\begin{array}{cc}
1 / 15 & 4 / 15 \\
2 / 15 & 8 / 15
\end{array}\right] \rightarrow 5 / 15=1 / 3
$$

3/15 12/15
11
11
$1 / 5 \quad 4 / 5$
Notice that $\left(p_{-x}\right)^{\top}\left(P_{Y}\right)=P_{X Y}$; that is $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all pair (x, y).
Therefore, $X \Perp Y$.

$$
x \nVdash y
$$

a) $H(X, Y)=H(X)+H(Y) \approx 1.6402$
b) $H(x) \stackrel{x}{x} \underset{x}{\|} H y([1 / 3$

$$
2 / 3]) \approx 0.9183
$$

c) $H(Y)=H([1 / 54 / 5]) \approx 0.7219$
d) $H(X \mid Y)=H(X) \approx 0.9183$
e) $H(Y \mid X) \stackrel{x \Perp Y}{\stackrel{1}{=}} H(Y) \approx 0.7219$
f) $I(X ; Y)=0$ because $X \Perp Y$
(a) Symmetric channel $\Rightarrow C=\log _{2}\left|s_{Y}\right|-H(\underline{r})=\log _{2} 2-H\left(\left[\begin{array}{ll}\frac{1}{3} & \frac{2}{3}\end{array}\right]\right)$

$$
=1-0.9183 \approx 0.0817
$$

(b) Note that this is a noisy channel with non overlapping outputs.
so, $c=\log _{2}\left|s_{x}\right|=\log _{2} 3 \approx 1.5850$.
(C)

$$
\begin{aligned}
& \begin{aligned}
I(X ; Y) & =\underbrace{H(Y)}_{L}-\underbrace{H}_{L(Y \mid X)}=H\left(\left[\begin{array}{ll}
1 / 3 & 2 / 3
\end{array}\right]\right) \leftarrow \\
& \leftarrow \\
q & =P Q=\left[P_{0} 1-p_{0}\right]\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
\end{aligned} \\
& =\left[\begin{array}{lll}
\frac{1}{3} p_{0} & \frac{2}{3} p_{0}+\frac{2}{3}\left(1-p_{0}\right) & \frac{1}{3}\left(1-p_{0}\right)
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{3} p_{0} & \frac{2}{3} & \frac{1}{3}\left(1-p_{0}\right)
\end{array}\right]
\end{aligned}
$$

Because $H(Y \mid X)$ is fixed, we need to maximize $H(Y)$.
To do this, note that

$$
\begin{aligned}
& H(Y)=-\frac{1}{3} p_{0} \log _{2} \frac{1}{3} p_{0}-\frac{2}{3} \log _{2} \frac{2}{3}-\frac{1}{3}\left(1-p_{0}\right) \log _{2} \frac{1}{3}\left(1-p_{0}\right) . \\
&(\ln 2) H(Y)=-\frac{1}{3} p_{0} \ln \left(\frac{1}{3} p_{0}\right)-\frac{2}{3} \ln \frac{2}{3}-\frac{1}{3}\left(1-p_{0}\right) \ln \left(\frac{1}{3}\left(1-p_{0}\right)\right) \\
& \frac{d}{d p_{0}} \|^{\|} \\
&=-\frac{1}{3}\left(1+\ln \left(\frac{1}{3} p_{0}\right)\right)-\left(-\frac{1}{3}\right)\left(1+\ln \left(1+\frac{1}{3}\left(1-p_{0}\right)\right)\right) \\
&=\frac{1}{3}\left(\ln \left(\frac{x_{3}\left(1-p_{0}\right)}{1 x_{3} p_{0}}\right)\right)=\frac{1}{3} \ln \left(\frac{1-p_{0}}{p_{0}}\right)=\frac{1}{3} \ln (\underbrace{\frac{1}{p_{0}}-1}_{\uparrow})
\end{aligned}
$$

Note: $\frac{d}{d x} f(x) \ln f(x)=f^{\prime}(x) \ln f(x)+\mathcal{L}(x) f^{\prime}(x)$ $\frac{1}{p_{0}}-1$ decreases from $+\infty$ to 0^{+} $=\left(f^{\prime}(a)\right)(1+\ln f(x))$ $\ln \left(\frac{1}{p_{0}}-1\right)$ decreases from $+\infty$ to $-\infty$.

The derivative is 0 at $p_{0}=\frac{1}{2}$. For $p_{0}<\frac{1}{2}$, the derivative is >0;

$$
\uparrow^{2} \text { For } p_{0}>\frac{1}{2}, \quad, \quad<0
$$

$$
\frac{1}{3} \ln \left(\frac{1}{\rho_{0}}-1\right)=0
$$

so, $p_{0}=\frac{1}{2}$ is the global maximum.
When $p_{0}=1 / 2$,

$$
H(Y)=H\left(\left[\begin{array}{lll}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}\right]\right) .
$$

so, $\quad C=H\left(\left[\begin{array}{lll}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{array}\right]\right)-H\left(\left[\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right]\right)$

$$
=-\frac{2}{6} \log _{2} \frac{1}{6}-\frac{2}{3} \log _{2} \frac{2}{3}+\frac{1}{3} \log _{2} \frac{1}{3}+\frac{2}{3} \log _{2} \frac{2}{3}
$$

$$
=\frac{1}{3} \log _{2} \frac{6}{3}=\frac{1}{3}
$$

(d) The rows of Q are the same. So, $q(y)=Q(y \mid x)$ which implies $X \Perp Y$.

Therefore, $I(x ; y)=0$ for any input distribution.
Hence, $C=0$.

ECS 452: Digital Communication Systems 2013/1

HW 5 - Due: Not Due
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) Have fun!

Problem 1. Consider a standard rectangular 8-ary constellation shown in Figure 1. As usual, it is derived from the waveform models whose noise process is additive white Gaussian noise (AWGN) with PSD $\frac{N_{0}}{2}=3$. The constellation is centered at the origin (so that the average E_{s} is minimized.) The vertical distances and horizontal distances between any adjacent points are all $d=1$. Minimum-distance detector is used.
(a) Find the $(1,2)$ element in the Q matrix. (This is the probability that the detector output is $\hat{W}=2$ given that the actual intended message is $W=1$.)
(b) Find the $(3,5)$ element in the Q matrix.
(c) Find the value of $\frac{E_{b}}{N_{0}}$ for this constellation under the above description of noise. Assume equiprobable messages.

Figure 5.1: Constellations for Problem 1.

Problem 2. Often, we have to work with constellation that is difficult to derive the Q matrix (because the integrations involved are difficult. It's best to try to reduce the number of calculations that are needed.

In class, we have seen that, for QPSK, even though there are $4^{2}=16$ possible elements in the matrix Q, we only have to identify three elements in there. Here, consider the constellations in Figure 5.2, i and Figure 5.2 ii. Let's suppose that you have already calculated some elements of their Q matrices to be

$$
Q=\left[\begin{array}{l|l|l}
& 0.30 & \\
\hline & & \\
\hline & &
\end{array}\right] \text { and } Q=\left[\begin{array}{l|l|l|l}
0.41 & 0.29 & & \\
\hline & & & \\
\hline & & & \\
\hline & & 0.33 &
\end{array}\right],
$$

respectively.

Figure 5.2: Constellations for Problem 2.
(a) Find the values of the rest of the elements. Assume minimum-distance (maximumlikelihood) decoder and AWGN channel.
(b) Find the (overall average) probability of (detection) error for each constellation. Assume that the points are equally likely.

Problem 3. Consider the vector channel derived from waveform channels under AWGN with PSD $\frac{N_{0}}{2}$. We consider two digital modulation: BPSK and QPSK. The detector at the receiver uses minimum-distance detection.
(a) Derive the formula and then plot the capacity of BPSK as a function of $\frac{E_{b}}{N_{0}}$.
(b) Derive the formula and then plot the capacity of QPSK as a function of $\frac{E_{b}}{N_{0}}$.

Problem 4. A linear block code has a generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(a) List all codewords for this code.
(b) Determine a suitable parity check matrix H.
(c) Check that $G H^{T}=0$
(d) Find the minimum distance of this code.

Problem 5. A Hamming code has the parity check matrix given by

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(a) What is the number of parity bits used in this code?
(b) Find the corresponding generator matrix.
(c) The following information bits are to be encoded using the Hamming code above:

$$
001110111010
$$

(i) How should the bits be split into blocks? In particular, what is the length of each block and how many blocks are used?
(ii) Find the corresponding codewords
(d) Some more information bits were generated. They were encoded using the Hamming code above. Suppose the received bits are

$$
101101110000010100001
$$

(i) How should the received bits be split into blocks (received vectors)? In particular, what is the length of each block and how many blocks are there?
(ii) Locate and correct all errors.

When the AWGN has PSD $=\frac{N_{0}}{2}$, we know that the noise in vector form will have $\sigma^{2}=\frac{N_{0}}{2}$ in each dimension.

To solve part (a) and (b), we first sketch the decision regions. Here, the boundaries of the regions can be easily found because the detector use minimum-distance detection.
(Earlier, we saw that this detector is optimal (same as the MAP detector) when
(1) the vector channel model is additive Gaussian noise and
(2) the messages ave equally likely.)

The boundaries are simply the perpendicular bisectors of the lines connecting two (vertically or horizontally) adjacent signal points.

(a) $Q_{1,2}=P[\hat{\omega}=2 \mid W=1]$

To be detected $a, \vec{s}^{(2)}$, the received vector must be in D_{2} The first component of \vec{N} (Noise in the $n^{2 t}$ dimension)
the decision region for $\vec{r}^{(2)}$.

$$
Q_{12}=p\left[-\infty<N_{1} \leqslant \frac{d}{2}\right] p\left[\frac{d}{2} \leqslant N_{2}<\infty\right]
$$

$$
\text { [The second component of } \vec{N}
$$

$$
\text { (Noise in the } 2^{\text {nd }} \text { dimension) }
$$

$$
\begin{aligned}
& \quad \text { (Noive in me } 2^{\text {nd }} \text { dimension) } \\
& =\left(Q\left(\frac{-\infty}{\sigma}\right)-Q\left(\frac{d}{2 \sigma}\right)\right)\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{\infty}{\sigma}\right)\right)=\left(1-Q\left(\frac{d}{2 \sigma}\right)\right)\left(Q\left(\frac{d}{2 \sigma}\right)\right) \\
& \text { Here, } \sigma^{2}=\frac{N_{0}}{2} \text {. So } \sigma=\sqrt{\frac{N_{0}}{2}} \text { and } \frac{d}{2 \sigma}=\frac{d}{2 \times \sqrt{\frac{N_{0}}{2}}}=\frac{1}{2 \sqrt{3}} . \\
& \text { There fore, } Q_{12}=\left(1-Q\left(\frac{1}{2 \sqrt{3}}\right)\right)\left(Q\left(\frac{1}{2 \sqrt{3}}\right)\right) \approx 0.2371
\end{aligned}
$$

(b)

$$
\begin{aligned}
& Q_{3,5}=P[\hat{\omega}=5 \mid \omega=3] \\
& =p\left[\frac{d}{2} \leqslant N_{1} \leqslant \frac{3 d}{2}\right] p\left[+\frac{d}{L} \leqslant N_{2}<\infty\right] \\
& =\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{3 d}{2 \sigma}\right)\right)\left(Q\left(+\frac{d}{2 \sigma}\right)-Q\left(\frac{\sigma}{\sigma}\right)\right) \\
& =\left(Q\left(\frac{d}{2 \sigma}\right)-Q\left(\frac{3 d}{2 \sigma}\right)\right)\left(1 / / Q\left(\frac{d}{2 \sigma}\right)\right) \\
& =\left(Q\left(\frac{1}{2 \sqrt{3}}\right)-Q\left(\frac{\sqrt{3}}{2}\right)\right)\left(1 / 7 Q\left(\frac{1}{2 \sqrt{3}}\right)\right) \\
& \approx \text { ENT厉 } 0.0746
\end{aligned}
$$

(c)

$$
\begin{aligned}
& =\sqrt{\frac{10 d^{2}}{4}}=d \sqrt{\frac{5}{2}} \\
& E_{s}=\frac{1}{8} \times\left(4 \times\left(\frac{d}{\sqrt{2}}\right)^{2}+4 \times\left(d \sqrt{\frac{5}{2}}\right)^{2}\right)=\frac{1}{2}\left(\frac{d^{2}}{2}+\frac{5 d^{2}}{2}\right)=\frac{1}{2} \times 3 d^{2}=\frac{3}{2} d^{2} \\
& E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{\frac{3}{2} d^{2}}{\log _{2} 8}=\frac{\frac{3}{2} d^{2}}{3}=\frac{1}{2} d^{2}=\frac{1}{\prod_{d=1}^{2}} \\
& \frac{E_{b}}{N_{0}}=\frac{1 / 2}{2 \times 3}=\frac{1}{12} .
\end{aligned}
$$

(a) (i) Step (1)

Same arrangement of point

$$
Q=\left[\begin{array}{lll}
0.3 & 0.3 \\
0.3 & \downarrow & 0.3 \\
0.3 & 0.3 &
\end{array}\right]
$$ vs. decision region.

Step (2)

$$
Q=\left[\begin{array}{ll}
1-0.3-0 & \left.\begin{array}{cc}
1-0 & 0.3 \\
0.3 & 0.3 \\
0.3 & 0.3
\end{array}\right]
\end{array}\right]
$$

Conclusion: $O=\left[\begin{array}{lll}0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.3 & 0.3 & 0.4\end{array}\right]$
(ii)

$$
Q=\left[\begin{array}{llll}
0.41 & 0.29 & 0.29 & 0.01 \\
0.29 & 041 & 0.29 & 0.01 \\
0.29 & 0.29 & 0.41 & 0.01 \\
0.33 & 0.33 & 0.33 & 0.01
\end{array}\right]
$$

(b)

$$
\begin{array}{r}
P(\varepsilon)=P[\hat{\omega} \neq \omega]=1-P[\hat{\omega}=w]=1-\sum_{i} P[\hat{\omega}=w \mid w=i] P[w=i] \\
=1-\sum_{i} P[\hat{\omega}=i \mid w=i] \frac{1}{M}=1-\sum_{i} Q_{i, i} \frac{1}{M}=1-\frac{1}{M} \operatorname{tr}(Q) . \\
\quad \operatorname{tr}(A)=\text { the sum of likely messages }
\end{array}
$$ the elements on the main diagonal of A.

(i) $p(\varepsilon)=1-\frac{1}{3}(0.4+04+0.4)=0.6$
(ii) $P(\varepsilon)=1-\frac{1}{4}(3 \times 0.41+0.01)=0.69$
(a) BPsk waveform channel gives binary symmetric channel with crossover probability

$$
\begin{aligned}
& p=Q\left(\frac{d}{2 \sigma}\right)=Q\left(\sqrt{\frac{4 E_{b}}{2 N_{0}}}\right)=Q\left(\sqrt{2 \frac{E_{b}}{N_{0}}}\right) \\
& E_{s}=\left(\frac{d}{2}\right)^{2}=\frac{d^{2}}{4} \quad \sigma^{2}=\frac{N_{0}}{2} \\
& E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{d^{2} / 4}{\log _{2} 2}=\frac{d^{2}}{4} \quad \sigma=\sqrt{\frac{N_{0}}{2}} \\
& d=\sqrt{4 E_{b}}
\end{aligned}
$$

The capacity of $B S C$ is given by $1-H(p)=$

$$
=1+\left(p \log _{2} p+(1-p) \log _{2}(1-p)\right) \text { where } p=Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)
$$

(b) In class, we have shown that the Q matrix of standard rectangular quaternary Q AM is given by

$$
Q=\left[\begin{array}{cccc}
(1-q)^{2} & q(1-q) & q(1-q) & q^{2} \\
q(1-q) & (1-q)^{2} & q^{2} & q(1-q) \\
q(1-q) & q^{2} & (1-q)^{2} & q(1-q) \\
q^{2} & q(1-q) & q(1-q) & (1-q)^{2}
\end{array}\right] \quad \text { where } \quad \vec{s}^{(1)}=Q\left(\frac{d}{2 \sigma}\right)
$$

This is a symmetric channel and the corresponding capacity is

$$
C=\log _{2}\left|s_{Y}\right|-H(\vec{r})=\log _{2} 4-H\left(\left[(1-q)^{2} q(1-q) q(1-q) q^{2}\right]\right)
$$

To get the constellation for $Q p s k$, we simply rotate the constellation above by 45°.

So, the capacity is the same as what we found above.
Note also that $E_{s}=\left(\frac{d}{\sqrt{2}}\right)^{2}=\frac{d^{2}}{2}$ and $E_{b}=\frac{E_{s}}{\log _{2} M}=\frac{E_{3}}{\log _{2} 4}=\frac{d^{2} / 2}{2}=\frac{d^{2}}{4}$

$$
\begin{aligned}
d & =\sqrt{4 E_{b}} \\
\frac{d}{2 \sigma} & =\sqrt{\frac{4 E_{b}}{2 N_{0}}}=\sqrt{2 \frac{E_{b}}{N_{0}}}
\end{aligned}
$$

Therefore,

$$
C=2+(1-q)^{2} \log _{2}(1-q)^{2}+2 q(1-q) \log _{2} q(1-q)+q^{2} \log _{2} q^{2}
$$

where $q_{0}=Q\left(\sqrt{2 \frac{E L}{N_{0}}}\right)$

$$
G=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right):}_{P^{L}}:\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(a) Any codeword is of the form $x=b G$.

Here, 6 has $k=2$ rows; so, the length of b must also be $k=2$. Therefore, there are $2^{k}=2^{2}=4$ codewords.

b	$x=b G$
00	000000
01	011101
10	100010
11	111111

(b) $H=\left[I:-P^{T}\right]=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right]$ does not matter in GF(2)
(c)

$$
G H^{T}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0
\end{array}\right]
$$

(d) $d_{\text {min }}=2 \leftarrow$ There are $\binom{4}{2}=6$ pairs of codewords.

The minimum Hamming distance among there pairs is 2 .

(a) Matrix H should be $(n-k) \times n$.

So, $n=7$,

$$
\begin{aligned}
& n-k=3 \\
& k=n-3=7-3=4
\end{aligned}
$$

(b)

$$
\sigma=\underset{\text { the negative sign }}{\left[-p^{T} \mid I\right]}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

does not matter in GF(2)
(c)
(i) From (a), we know that $k=4$. Therefore, the information bits should be divided into blocks of 4 bits. 12 bits are given. So, there should be $\frac{12}{4}=3$ blocks.
(ii)

\underline{b}	$\underline{x}=\underline{b} G$
0011	0
1	0
1	1

(d)
(i) From (a), we know that $n=7$. Therefore, the received bits should be divided into blocks of 7 bits 21 bits are given. So, there should be $\frac{21}{7}=3$ blocks.
(ii)

Error position Corrected x 1011010
1001001
$010 \underbrace{0101}_{\hat{\hat{b}}}$

